
Microprocessor & Computer Architecture / Lecture6 2016-2017

45

Multiplication and Division

 Multiplication

Multiplication is performed on bytes, words.

 If two 8-bit numbers are multiplied, they generate a 16-bit product;

 if two 16-bit numbers are multiplied, they generate a 32-bit product;

Some flag bits (overflow and carry) change when the multiply instruction

executes and produce predictable (متتتّتتت تتت) outcomes. The other flags also

change, but their results are unpredictable (مّقل ب) and therefore are unused.

 In an 8-bit multiplication, if the most significant 8 bits of the result are

zero, both CF and OF bits equal zero. These flag bits show that the

result is 8 bits wide (CF = 0) or 16 bits wide (CF= 1).

 In a 16-bit multiplication, if the most significant 16-bits part of the

product is 0, both CF and OF clear to zero.

 8-Bit Multiplication.

With 8-bit multiplication, the multiplicand is always in the AL register,

whether signed or unsigned. The multiplier can be any 8-bit register or any

memory location.

The multiplication instruction contains one operand because it always

multiplies the operand times the contents of register AL.

An example is :

MUL BL

 Which multiplies the unsigned contents of AL by the unsigned contents of

BL. After the multiplication, the unsigned product is placed in AX—a double-

width product. Table below illustrates some 8-bit multiplication instructions.

Microprocessor & Computer Architecture / Lecture6 2016-2017

46

Assembly Language Operation

MUL CL AL is multiplied by CL; the unsigned product is in AX

IMUL DH AL is multiplied by DH; the signed product is in AX

IMULBYTE PTR[BX] AL is multiplied by the byte contents of the data

segment memory location addressed by BX; the signed

product is in AX

MUL TEMP AL is multiplied by the byte contents of data segment

memory location TEMP; the unsigned product is in AX

Suppose that BL and CL each contain two 8-bit unsigned numbers, and these

numbers must be multiplied to form a 16-bit product stored in DX. This procedure

cannot be accomplished by a single instruction because we can only multiply a

number times the AL register for an 8-bit multiplication. The Example below shows

a short program that generates . This example loads register BL and CL with example

data 5 and 10. The product, a 50, moves into DX from AX after the multiplication

by using the MOV DX,AX instruction.

Example:

MOV BL,5 ;load data

MOV CL,10

MOV AL,CL ;position data

MUL BL ;multiply

MOV DX,AX ;position product

For signed multiplication, the product is in binary form, if positive, and in two’s

complement form, if negative. These are the same forms used to store all positive

and negative signed numbers used by the microprocessor. If the program of previous

Example multiplies two signed numbers, only the MUL instruction is changed to

IMUL.

Microprocessor & Computer Architecture / Lecture6 2016-2017

47

 16-Bit Multiplication.

Word multiplication is very similar to byte multiplication. The difference is

that AX contains the multiplicand instead of AL, and the 32-bit product

appears in DX–AX instead of AX. The DX register always contains the most

significant 16 bits of the product, and AX contains the least significant 16 bits.

As with 8-bit multiplication, the choice of the multiplier is up to the

programmer. The Table below shows several different 16-bit multiplication

instructions.

Assembly Language Operation

MUL CX AX is multiplied by CX; the unsigned product is in

DX–AX

IMUL DI AX is multiplied by DI; the signed product is in DX–

AX

MUL WORD PTR[SI] AX is multiplied by the word contents of the data

segment memory

 Division

As with multiplication, division occurs on 8- or 16-bit numbers in the 8086–

80286 microprocessors. These numbers are:

 Signed (IDIV) or

 Unsigned (DIV) integers.

The dividend is always a double-width dividend that is divided by the

operand. This means that an 8-bit division divides a 16-bit number by an 8-bit

number; a 16-bit division divides a 32-bit number by a 16-bit number; There is

no immediate division instruction available to any microprocessor. None of the

flag bits change predictably(مّ بشكل) for a division.

A division can result in two different types of errors;

Microprocessor & Computer Architecture / Lecture6 2016-2017

48

 One is an attempt to divide by zero and,

 The other is a divide overflow. A divide overflow occurs when a small

number divides into a large number.

 For example,

suppose that AX=3000 and that it is divided by 2. Because the quotient for an

8-bit division appears in AL, the result of 1500 causes a divide overflow because the

1500 does not fit into AL. In either case, the microprocessor generates an interrupt

if a divide error occurs. In most systems, a divide error interrupt displays an error

message on the video screen.

 8-Bit Division.

An 8-bit division uses the AX register to store the dividend that is divided by

the contents of any 8-bit register or memory location. The quotient moves into

AL after the division with AH containing a whole number remainder. For a

signed division, the quotient is positive or negative; the remainder always

assumes the sign of the dividend and is always an integer.

For example,

if AX = 0010H (+16) and BL = 0FDH1 (-3) the

IDIV BL instruction executes, AX = 01FBH

Below Table lists some of the 8-bit division instructions.

Assembly Language Operation

DIV CL AX is divided by CL; the unsigned quotient is in AL

and the unsigned remainder is in AH.

IDIV BL AX is divided by BL; the signed quotient is in AL and

the signed remainder is in AH.

DIV BYTE PTR[BP]

AX is divided by the byte contents of the stack segment

memory location addressed by BP; the unsigned

quotient is in AL and the unsigned remainder is in AH.

Microprocessor & Computer Architecture / Lecture6 2016-2017

49

Example

MOV AL,NUMB ;get NUMB

MOV AH,0 ;zero-extend

DIV NUMB1 ;divide by NUMB1

MOV ANSQ,AL ;save quotient

 MOV ANSR,AH ;save remainder

This Example illustrates a short program that divides the unsigned byte

contents of memory location NUMB by the unsigned contents of memory location

NUMB1. Here, the quotient is stored in location ANSQ and the remainder is stored

in location ANSR. Notice how the contents of location NUMB are retrieved from

memory and then zero-extended to form a 16-bit unsigned number for the dividend.

 16-Bit Division.

Sixteen-bit division is similar to 8-bit division, except that instead of

dividing into AX, the 16-bit number is divided into DX–AX, a 32-bit

dividend. The quotient appears in AX and the remainder appears in DX after

a 16-bit division. Table below lists some of the 16-bit division instructions.

Assembly Language Operation

DIV CX DX–AX is divided by CX; the unsigned quotient is AX

and the unsigned remainder is in DX

IDIV SI DX–AX is divided by SI; the signed quotient is in AX

and the signed remainder is in DX

DIV NUMB DX–AX is divided by the word contents of data

segment memory NUMB; the unsigned quotient is in

AX and the unsigned

Microprocessor & Computer Architecture / Lecture6 2016-2017

50

Example

MOV AX,–100 ;load a –100

MOV CX,9 ;load +9

CWD ;sign-extend

IDIV CX

This Example shows the division of two 16-bit signed numbers. Here, in AX

–100 is divided by +9 in CX. The CWD instruction converts the –100 in AX to –

100 in DX–AX before the division. After the division, the results appear in DX–AX

as a quotient of –11 in AX and a remainder of –1 in DX.

3- Basic Logic Instructions

The basic logic instructions include:

 AND

 OR

 Exclusive-OR, and

 NOT

Logic operations provide binary bit control in low-level software. The logic

instructions allow bits to be set, cleared, or complemented. Low-level software

appears in machine language or assembly language form and often controls the I/O

devices in a system. All logic instructions affect the flag bits. Logic operations

always clear the carry and overflow flags, while the other flags change to reflect

the condition of the result.

Example AND instructions

Assembly Language Operation

AND AL,BL AL = AL and BL

AND CX,DX CX = CX and DX

Microprocessor & Computer Architecture / Lecture6 2016-2017

51

AND CL,33H CL = CL and 33H

AND DI,4FFFH DI = DI and 4FFFH

AND AX,[DI] The word contents of the data segment memory

location addressed by DI are ANDed with AX

AND [EAX],CL CL is ANDed with the byte contents of the data

segment memory location addressed by ECX

Example OR instructions.

Assembly Language Operation

OR AH,BL AL = AL or BL

OR SI,DX SI = SI or DX

OR DH,0A3H DH = DH or 0A3H

OR DX,[BX] DX is ORed with the word contents of data segment

memory location addressed by BX.

Example Exclusive-OR instructions.

Assembly Language Operation

XOR CH,DL CH = CH xor DL

XOR SI,BX SI = SI xor BX

XOR AH,0EEH AH = AH xor 0EEH

XOR DI,00DDH DI = DI xor 00DDH

XOR DX,[SI] DX is Exclusive-ORed with the word contents of the

data segment memory location addressed by SI

Microprocessor & Computer Architecture / Lecture6 2016-2017

52

NOT and NEG

 Logical inversion, or the one’s complement (NOT), and arithmetic sign

inversion, or the two’s complement (NEG). These are two of a few instructions that

contain only one operand. Table below lists some variations of the NOT and NEG

instructions.

Example NOT and NEG instructions.

Assembly Language Operation

NOT CH CH is one’s complemented

NEG CH CH is two’s complemented

NEG AX AX is two’s complemented

NOT BYTE PTR[BX] The byte contents of the data segment memory location

addressed by BX are one’s complemented

More Examples

Instructions AL

MOV AL, 0101 0101B 0101 0101 B

AND AL,0001 1111B 0001 0101 B

OR AL,1100 0000B 1101 0101 B

XOR AL,0000 1111B 1101 1010 B

