CHAPTER ONE
INTRODUCTION TO MEASUREMENTS

1. Definition. Measurement is the process of determinating the value of a physical quantity
experimentally with the help of special technical means called measuring instruments.

A measurable quantity (briefly—measurand) is a property of phenomena, bodies, or substances that
can be defined qualitatively and expressed quantitatively.

Measurable quantities are also called physical quantities. The principal feature of physical
quantities is that they can be measured.

The value of a physical quantity is the product of a number and a unit adapted for these quantities. It
is found as the result of a measurement.

2. Measurement units

The very first measurement units were those used in barter trade to quantify the amounts being
exchanged and to establish clear rules about the relative values of different commodities. Such early
systems of measurement were based on whatever was available as a measuring unit. For purposes of
measuring length, the human torso was a convenient tool, and gave us units of the hand, the foot
and the cubit. Although generally adequate for barter trade systems, such measurement units are of
course imprecise, varying as they do from one person to the next. Therefore, there has been a
progressive movement towards measurement units that are defined much more accurately.

Table 1.1. and table 1.2. show standards for defining units used for measuring a range of physical
variables.

Table 1.1 Definitions of standard units

Physical quantity Standard unit Definition

Length metre The lengih of path travelied by light in an interval of
1/29% 792 458 seconds

Mass kilogram The mass of a platinum—iridium cylinder kept in the
International Burean of Weights and Measures,
Sevres, Paris

Time second 9.192631770 x 107 cycles of radiation from

vaporized caesium-133 (an accuracy of 1 in 16!2 or
1 second in 36 000 years}

Temperature kelvin The temperature difference between absolute zero
and the triple point of water is defined as 273.16
kelvin

Current ampere One ampere is the current flowing through two
infinitely long parallel conductors of negligible
cross-section placed 1 metre %part in a vacuum and
producing a force of 2 x 10~/ newtons per metre
leagth of conducter

Luminous intensity candela One candela is the luminous intensity in a given
direction from: a source emitting monochrematic
radiation at a frequency of 540 tershertz (Hz x 1012y
and with a radiant density in that direction of 1.4641
mW/steradian. {! steradizn is the solid angle which,
having its vertex at the centre of a sphere, cuts off an
area of the sphere surface equal to that of a square
with sides of length equal to the sphere radius)

Matter mole The number of atoms in a 0.012kg mass of
carbon-12
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Table 1.2 Fundamental and derived SI units

{a) Fundamental units

Quantity Standard unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Luminous intensity candela cd
Matter mole mol
(b) Supplementary fundamental vnits
Quantity Standard unir Symbol
Plane angle radian rad
Solid angle steradian sC
(c) Derived units

Derivation
Quantity Standard unit Symbol Jormula
Area square metre m?
Volume cubic metre m?
Velocity metre per second mfs
Acceleration metre per second squared m/s?
Angular velocity radian per second rad/s
Angular acceleration radian per second squared rad/s®
Density kilogram per cubic metre kg/m3
Specific voiume cubic metre per kilogram mi/kg
Mass flow rate kilogram per second kg/s
Volume flow rate cubic metre per second m s
Force newton N kg m/s?
Pressure REWIOR DOF sQuUAre metre N/m?
Torque newton metre Nm
Momentam kilogram metre per second kg m/s
Moment of inertia kilogram metre squared kg m?
Kinematic viscosity square metre per second m2/s
Dysamic viscosity newton second per square metre N s/m?
Work, energy, heat joule J Nm
Specific energy joule per cubic metre Jfm3
Power watt w Is
Thermal conductivity watt per metre kelvin W/mK
Electric charge coulomb C As
Voltage, e.m.f., pot. diff. volt v W/A
Electric field strength volt per metre V/m
Electric resistance ohm «Q Y/IA
Electric capacitance farad F AsiV
Electric inductance henry H Vs/A
Electric conduactance siemen 3 ANV
Resistivity ohm metre Qm
Permittivity farad per metre F/im
Permeability henry per metre H/m
Current density ampere per sguare metre Afm?

Table 1.2 (continued)
(c) Derived units

{continued overleaf}

Derivation
Queantity Standard unit Symbol formula
Magnetic flux weber Wb Vs
Magretic flux density tesla T Wh/m?*
Magnetic field strength ampere per meire Afm
Frequency hertz Hz !
Luminous flux lumen Im cdsr
Luminance candela per square metre cd/m?
Hlumination lux Ix Im/m?
Molar volume cubic metre per mole m*fmol
Molarity mole per kilogram molfkg
Molar energy joule per mole Jimal
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3. Elements of measuring instrument system.
A measuring system exists to provide information about the physical value of some variable being

measured. In simple cases, the system can consist of only a single unit that gives an output reading
or signal according to the magnitude of the unknown variable applied to it. However, in more
complex measurement situations, a measuring system consists of several separate elements as
shown in Figure 1. These components might be contained within one or more boxes, and the boxes
holding individual measurement elements might be either close together or physically separate. The
term measuring instrument is commonly used to describe a measurement system.

Measured

variable Output
(measurand) _ N measurement

B — > > e
i
Sensor Variable Signal Il
conversion processing !
element :
I
Qutput !
display/ <+—I | -Use of meagurement _ I———
relcsop:di)r;g at remote point Signal

Signal transmission

presentation
or recording

Figure (1) Elements of a measuring instrument.

3.1. The sensor

The sensor gives an output that is a function of the measurand (the input applied to it). For most but
not all sensors, this function is at least approximately linear. Some examples of primary sensors are
a liquid-in-glass thermometer, a thermocouple and a strain gauge. In the case of the mercury-in-
glass thermometer, the output reading is given in terms of the level of the mercury, and so this
particular primary sensor is also a complete measurement system in itself. However, in general, the
primary sensor is only part of a measurement system.

3.2.Variable conversion

Variable conversion elements are needed where the output variable of a primary transducer is in an
inconvenient form and has to be converted to a more convenient form. For instance, the
displacement-measuring strain gauge has an output in the form of a varying resistance. The
resistance change cannot be easily measured and so it is converted to a change in voltage by a
bridge circuit, which is a typical example of a variable conversion element. In some cases, the
primary sensor and variable conversion element are combined, and the combination is known as a
transducer.

3.3.Signal processing
Signal processing elements exist to improve the quality of the output of a measurement system in

some way. A very common type of signal processing element is the electronic amplifier, which
amplifies the output of the primary transducer or variable conversion element, thus improving the
sensitivity and resolution of measurement. This element of a measuring system is particularly
important where the primary transducer has a low output. For example, thermocouples have a
typical output of only a few millivolts. Other types of signal processing element are those that filter
out induced noise and remove mean levels etc. In some devices, signal processing is incorporated
into a transducer, which is then known as a transmitter.
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e In addition to these three components just mentioned, some measurement systems have one
or two other components, firstly to transmit the signal to some remote point and secondly to
display or record the signal if it is not fed automatically into a feedback control system.
Signal transmission is needed when the observation or application point of the output of a
measurement system is some distance away from the site of the primary transducer.
Sometimes, this separation is made solely for purposes of convenience, but more often it
follows from the physical inaccessibility or environmental unsuitability of the site of the
primary transducer for mounting the signal presentation/recording unit. The signal
transmission element has traditionally consisted of single or multi-cored cable, which is
often screened to minimize signal corruption by induced electrical noise. However, fibre-
optic cables are being used in ever increasing numbers in modern installations, in part
because of their low transmission loss and imperviousness to the effects of electrical and
magnetic fields.

The final optional element in a measurement system is the point where the measured signal
is utilized. In some cases, this element is omitted altogether because the measurement is
used as part of an automatic control scheme, and the transmitted signal is fed directly into
the control system. In other cases, this element in the measurement system takes the form
either of a signal presentation unit or of a signal-recording unit.

4. ERRORS

4.1. Definition :

If A is the true value of the measurable quantity and A' is the result of measurement, then the
absolute error of measurement is = A" — A. This equation is often used as a definition of this term,
but by doing that, one narrows the essence of this term.

The error expressed in absolute form is called the absolute measurement error ().
The error expressed in relative form is called the relative measurement error.

The relative error is the error expressed as a fraction of the true value of the measurable quantity ¢ =
(A" — A)/A. Relative errors are normally given as percent and sometimes per thousand (denoted by
%o). Very small errors, which are encountered in the most precise measurements, are customarily
expressed directly as fractions of the measured quantity.

4.2 types of errors:

4.2.1. Systematic errors
A measurement error is said to be systematic if it remains constant with repeated measurements or

changes in a regular fashion in repeated measurements of one and the same quantity. The observed
and estimated systematic error is eliminated from measurements by introducing corrections.
However, it is impossible to eliminate completely the systematic error in this manner. Some part of
the error will remain, and then this residual error will be the systematic component of the
measurement error.

They can be divided into two basic groups: instrumental errors and environmental errors.
Instrumental errors are inherent within the instrument, arising because of mechanical structures,
electronic designs, improper adjustments, wrong applications, and so on. They can also be sub
classified as loading, scale, zero, and response time errors. Environmental errors are caused by
environmental factors such as temperature and humidity.
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2.2. Sources of systematic errors:

2.2.1. System disturbance due to measurement
Disturbance of the measured system by the act of measurement is a common source of systematic

error. If we were to start with a beaker of hot water and wished to measure its temperature with a
mercury-in-glass thermometer, then we would take the thermometer, which would initially be at
room temperature, and plunge it into the water. In so doing, we would be introducing a relatively
cold mass (the thermometer) into the hot water and a heat transfer would take place between the
water and the thermometer. This heat transfer would lower the temperature of the water. Whilst the
reduction in temperature in this case would be so small as to be undetectable by the limited
measurement resolution of such a thermometer, the effect is finite and clearly establishes the
principle that, in nearly all measurement situations, the process of measurement disturbs the system
and alters the values of the physical quantities being measured.

S

4.2.2.2. Errors due to environmental inputs
An environmental input is defined as an apparently real input to a measurement system that is

actually caused by a change in the environmental conditions surrounding the measurement system.
The fact that the static and dynamic characteristics specified for measuring instruments are only
valid for particular environmental conditions (e.g. of temperature and pressure) These specified
conditions must be reproduced as closely as possible during calibration exercises because, away
from the specified calibration conditions, the characteristics of measuring instruments vary to some
extent and cause measurement errors.

The magnitude of this environment-induced variation is quantified by the two constants known as
sensitivity drift and zero drift. both of which are generally included in the published
specifications for an instrument. Such variations of environmental conditions away from the
calibration conditions are sometimes described as modifying inputs to the measurement system
because they modify the output of the system. When such modifying inputs are present, it is often
difficult to determine how much of the output change in a measurement system is due to a change in
the measured variable and how much is due to a change in environmental conditions.

4.2.2.3. Wear in instrument components
Systematic errors can frequently develop over a period of time because of wear in instrument

components. Recalibration often provides a full solution to this problem.

4.2.2.4. Connecting leads
In connecting together the components of a measurement system, a common source of error is the

failure to take proper account of the resistance of connecting leads (or pipes in the case of
pneumatically or hydraulically actuated measurement systems). For instance, in typical applications
of a resistance thermometer, it is common to find that the thermometer is separated from other parts
of the measurement system by perhaps 100 metres. The resistance of such a length of 20 gauge
copper wire is 7 Q , and there is a further complication that such wire has a temperature
coefficient of 1mQ/°C.

Therefore, careful consideration needs to be given to the choice of connecting leads. Not only
should they be of adequate cross-section so that their resistance is minimized, but they should be
adequately screened if they are thought likely to be subject to electrical or magnetic fields that could
otherwise cause induced noise. Where screening is thought essential, then the routing of cables also
needs careful planning. However, by changing the route of the cables between the transducers and
the control room, the magnitude of this induced noise was reduced by a factor of about ten.
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4.2.3. Reduction of systematic errors
The prerequisite for the reduction of systematic errors is a complete analysis of the measurement

system that identifies all sources of error. Simple faults within a system, such as bent meter needles
and poor cabling practices, can usually be readily and cheaply rectified once they have been
identified. However, other error sources require more detailed analysis and treatment. Various
approaches to error reduction are considered below.

4.2.3.1 Careful instrument design
Careful instrument design is the most useful weapon in the battle against environmental inputs, by

reducing the sensitivity of an instrument to environmental inputs to as low a level as possible. For
instance, in the design of strain gauges, the element should be constructed from a material whose
resistance has a very low temperature coefficient (i.e. the variation of the resistance with
temperature is very small). However, errors due to the way in which an instrument is designed are
not always easy to correct, and a choice often has to be made between the high cost of redesign and
the alternative of accepting the reduced measurement accuracy if redesign is not undertaken.

4.2.3.2 Method of opposing inputs
The method of opposing inputs compensates for the effect of an environmental input in a

measurement system by introducing an equal and opposite environmental input that cancels it out.
One example of how this technique is applied is in the type of millivoltmeter. This consists of a coil
suspended in a fixed magnetic field produced by a permanent magnet. When an unknown voltage is
applied to the coil, the magnetic field due to the current interacts with the fixed field and causes the
coil (and a pointer attached to the coil) to turn. If the coil resistance Rcoil is sensitive to
temperature, then any environmental input to the system in the form of a temperature change will
alter the value of the coil current for a given applied voltage and so alter the pointer output reading.
Compensation for this is made by introducing a compensating resistance Rcomp into the circuit,
where Rcomp has a temperature coefficient that is equal in magnitude but opposite in sign to that of
the coil. Thus, in response to an increase in temperature, Rcoil increases but Rcomp decreases, and
so the total resistance remains approximately the same.

4.2.3.3 Calibration

Instrument calibration is a very important consideration in measurement systems. All instruments
suffer drift in their characteristics, and the rate at which this happens depends on many factors, such
as the environmental conditions in which instruments are used and the frequency of their use. Thus,
errors due to instruments being out of calibration can usually be rectified by increasing the
frequency of recalibration.

4.2.3.4. Manual correction of output reading
In the case of errors that are due either to system disturbance during the act of measurement or due

to environmental changes, a good measurement technician can substantially reduce errors at the
output of a measurement system by calculating the effect of such systematic errors and making
appropriate correction to the instrument readings. This is not necessarily an easy task, and requires
all disturbances in the measurement system to be quantified. This procedure is carried out
automatically by intelligent instruments.

4.2.35. Intelligent instruments
Intelligent instruments contain extra sensors that measure the value of environmental inputs and

automatically compensate the value of the output reading. They have the ability to deal very
effectively with systematic errors in measurement systems, and errors can be attenuated to very low
levels in many cases.
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4.2.4. Random errors

To define a random measurement errors, imagine that some quantity is measured several times. If
there are differences between the results of separate measurements, and these differences cannot be
predicted individually and any regularities inherent to them are manifested only in many results,
then the error from this scatter of the results is called the random error.

Random errors are discovered by performing measurements of one and the same quantity
repeatedly under the same conditions, whereas systematic errors can be discovered experimentally
either by comparing a given result with a measurement of the same quantity performed by a
different method or by using a more accurate measuring instrument. However, systematic errors are
normally estimated by theoretical analysis of the measurement conditions, based on the known
properties of a measurand and of measuring instruments.

The quality of measurements that reflects the closeness of the results of measurements of the same
quantity performed under the same conditions is called the repeatability of measurements. Good
repeatability indicates that the random errors are small.

On the other hands, the quality of measurements that reflects the closeness of the results of
measurements of the same quantity performed under different conditions, i.e., in different
laboratories (at different locations) and using different equipment, is called the reproducibility of
measurements. Good reproducibility indicates that both the random and systematic errors are small.

Random errors in measurements are caused by unpredictable variations in the measurement system.
They are usually observed as small perturbations of the measurement either side of the correct
value, i.e. positive errors and negative errors occur in approximately equal numbers for a series of
measurements made of the same constant quantity.

Therefore, random errors can largely be eliminated by calculating the average of a number of
repeated measurements, provided that the measured quantity remains constant during the process
of taking the repeated measurements. This averaging process of repeated measurements can be done
automatically by intelligent instruments. The degree of confidence in the calculated mean/median
values can be quantified by calculating the standard deviation or variance of the data, these being
parameters that describe how the measurements are distributed about the mean value/median.

4.2.5. Statistical analysis of measurements subject to random errors
4.25.1. Mean and median values

The average value of a set of measurements of a constant quantity can be expressed as either the
mean value or the median value. As the number of measurements increases, the difference between

the mean value and median values becomes very small. However, for any set of N measurements xi,
X2, ou..n. , Xn Of @ constant quantity, the most likely true value is the mean given by:

This is valid for all data sets where the measurement errors are distributed equally about the zero
error value, i.e. where the positive errors are balanced in quantity and magnitude by the negative
errors.

The median is an approximation to the mean that can be written down without having to sum the
measurements. The median is the middle value when the measurements in the data set are written

down in ascending order of magnitude. For a set of N measurements X1, Xz, ...., Xn Of a constant
quantity, written down in ascending order of magnitude, the median value is given by:
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Thus, for a set of 9 measurements X1, Xz, ..., X9 arranged in order of magnitude, the median value is
x5. For an even number of measurements, the median value is midway between the two centre
values, i.e. for 10 measurements X1, Xo, ..., X10, the median value is given by:

(X5 + X6)/2.

Suppose that the length of a steel bar is measured by a number of different observers and the
following set of 11 measurements are recorded (units mm). We will call this measurement set A.

398, 420, 394, 416, 404, 408, 400, 420, 396, 413, 430 Measurement set A

The mean is 409.0 and the median 408. Suppose now that the measurements are taken again using
a better measuring rule, and with the observers taking more care, to produce the following
measurement set B:

409, 406, 402, 407, 405, 404, 407, 404, 407, 407, 408 Measurement set B

For these measurements, the mean is 406.0 and the median 407. Which of the two measurement
sets A and B, and the corresponding mean and median values, should we have most confidence in?
Intuitively, we can regard measurement set B as being more reliable since the measurements are
much closer together. In set A, the spread between the smallest (396) and largest (430) value is 34,
whilst in set B, the spread is only 6.

e Thus, the smaller the spread of the measurements, the more confidence we have in the mean
or median value calculated.

Let us now see what happens if we increase the number of measurements by extending
measurement set B to 23 measurements. We will call this measurement set C.

409, 406, 402, 407, 405, 404, 407, 404, 407, 407, 408, 406, 410, 406, 405, 408, 406, 409,
406, 405, 409, 406, 407 Measurement set C

Now, the mean is 406.5 and the median D 406.

e This confirms our earlier statement that the median value tends towards the mean value
as the number of measurements increases.

4.2.5.2. Standard deviation and variance

Expressing the spread of measurements simply as the range between the largest and smallest
value is not in fact a very good way of examining how the measurement values are distributed about
the mean value. A much better way of expressing the distribution is to calculate the variance or
standard deviation of the measurements. The starting point for calculating these parameters is to

calculate the deviation (error) di of each measurement X;i from the mean value Xmean:

di = Xi = Xmean
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The variance (V) is then given by :

The standard deviation (o) is simply the square root of the variance. Thus:

Example (1)

Calculate (o) and V for measurement sets A, B and C above.

0]

Note that the smaller values of V and ¢ for measurement set B compared with A correspond with
the respective size of the spread in the range between maximum and minimum values for the two
sets.

Solution
First, draw a table of measurements and deviations for set A (mean = 409 as calculated
carlier):

Measurement 308 420 394 416 404 308 400 420 396 413 430
Deviation from mean —11 +11 —I5 +7 -5 -1 -9 +I11 —13 +4 +21
(deviations)? 121 121 225 49 25 1 81 121 169 16 441

Y- (deviations®) = 1370; n = number of measurements = 11.

AN T 3
Then, V = Y (deviations®)/n — 1;= 1370/10 = 137; 0 = J/V = 1 L.7.
The measurements and deviations for set B are (mean = 406 as calculated carlier):

Measurement 400 406 402 407 405 404 407 404 407 407 408

Deviation from mean  +3 0 -4 +1 =1 =2 41 =2 <41 +1 ++2

(deviations)” 9 0 16 | | 4 1 4 1 | <
From this data, V=42and o = 2.05.

The measurements and deviations for set C are (mean = 406.5 as calculated earlier):

Measurement 409 406 402 407 405 404 307 404
Deviation from mean 425 ~035 -~45 405 =15 =25 405 =25
(deviations)™ 625 025 2025 025 225 625 025 625
Measurement 407 407 408 406 410 406 405 408
Deviation from mean +05 405 +15 —-05 +35 —-05 —-15 +15
(deviations)® 025 025 225 025 1225 025 225 225
Measurement 406 409 406 405 409 406 407
Deviation from mean -0.5 +2.5 -0.5 -1.5 +2.5 ~0.5 +0.5
(deviations) 0.25 6.25 0.25 2.25 6.25 0.25 0.25
From this data, V=358 and o0 = 1.88.

Thus, as V and (o) decrease for a measurement set, we are able to express greater confidence
that the calculated mean or median value is close to the true value, i.e. that the averaging
process has reduced the random error value close to zero.
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e Comparing V and (o) for measurement sets B and C, V and (o) get smaller as the number of
measurements increases, confirming that confidence in the mean value increases as the number
of measurements increases.

We have observed so far that random errors can be reduced by taking the average (mean or median)
of a number of measurements. However, although the mean or median value is close to the true
value, it would only become exactly equal to the true value if we could average an infinite number
of measurements. As we can only make a finite number of measurements in a practical situation, the
average value will still have some error. This error can be quantified as the standard error of the
mean, which will be discussed in detail a little later. However, before that, the subject of graphical
analysis of random measurement errors needs to be covered.

4.2.6. Graphical data analysis technigues — frequency distributions

Graphical techniques are a very useful way of analyzing the way in which random
measurement errors are distributed. The simplest way of doing this is to draw a histogram, in which
bands of equal width across the range of measurement values are defined and the number of
measurements within each band is counted. Figure (2) shows a histogram for set C of the length
measurement data given above, in which the bands chosen are 2mm wide. For instance, there are 11
measurements in the range between 405.5 and 407.5 and so the height of the histogram for this
range is 11 units. Also, there are 5 measurements in the range from 407.5 to 409.5 and so the height
of the histogram over this range is 5 units. The rest of the histogram is completed in a similar
fashion. (N.B. The scaling of the bands was deliberately chosen so that no measurements fell on the
boundary between different bands and caused ambiguity about which band to put them in.) Such a
histogram has the characteristic shape shown by truly random data, with symmetry about the mean
value of the measurements.

Number
of measurements

104

o- 25
401.5 403.5 4055 4075 4095 411.5 Measurements

(-0.5) (=0.3) (=0.1) (+0.1) (+0.3) (+0.5) (Deviations)
Figure (2) Histogram of measurements and deviations.

As it is the actual value of measurement error that is usually of most concern, it is often more useful
to draw a histogram of the deviations of the measurements from the mean value rather than to draw
a histogram of the measurements themselves.

The starting point for this is to calculate the deviation of each measurement away from the
calculated mean value.

Then a histogram of deviations can be drawn by defining deviation bands of equal width and
counting the number of deviation values in each band. This histogram has exactly the same shape as
the histogram of the raw measurements except that the scaling of the horizontal axis has to be
redefined in terms of the deviation values (these units are shown in brackets on figure 2).
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Let us now explore what happens to the histogram of deviations as the number of measurements
increases. As the number of measurements increases, smaller bands can be defined for the
histogram, which retains its basic shape but then consists of a larger number of smaller steps on
each side of the peak. In the limit, as the number of measurements approaches infinity, the
histogram becomes a smooth curve known as a frequency distribution curve as shown in Figure 3.6.
The ordinate of this curve is the frequency of occurrence of each deviation value, F(D), and the
abscissa is the magnitude of deviation, D.

F(D)

S

_. ‘“\\\\\\\\\\\\\\\

Do D, D; -0

Figure (3) Frequency distribution curve of deviation.

i

The symmetry of Figures 2 and 3 about the zero deviation value is very useful for showing

raphically that the measurement data only has random errors. Although these figures cannot
easily be used to quantify the magnitude and distribution of the errors, very similar graphical
techniques do achieve this. If the height of the frequency distribution curve is normalized such that
the area under it is unity, then the curve in this form is known as a probability curve, and the height

F(D) at any particular deviation magnitude D is known as the probability density function (p.d.f.).
The condition that the area under the curve is unity can be expressed mathematically as:

The probability that the error in any one particular measurement lies between two levels D1 and D2
can be calculated by measuring the area under the curve contained between two vertical lines drawn
through D1 and D2, as shown by the right-hand hatched area in Figure 3. This can be expressed
mathematically as:

Of particular importance for assessing the maximum error likely in any one measurement is the

cumulative distribution function (c.d.f.). This is defined as the probability of observing a value less
than or equal to DO, and is expressed mathematically as:
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Thus, the c.d.f is the area under the curve to the left of a vertical line drawn through DO, as
shown by the left-hand hatched area on Figure 3. The deviation magnitude Dp corresponding
with the peak of the frequency distribution curve (Figure 3) is the value of deviation that has the
greatest probability. If the errors are entirely random in nature, then the value of Dp will equal
zero. Any non-zero value of Dp indicates systematic errors in the data, in the form of a bias that
is often removable by recalibration.

Gaussian distribution

Measurement sets that only contain random errors usually conform to a distribution with a
particular shape that is called Gaussian, although this conformance must always be tested. The
shape of a Gaussian curve is such that the frequency of small deviations from the mean value is
much greater than the frequency of large deviations. This coincides with the usual expectation in
measurements subject to random errors that the number of measurements with a small error is much
larger than the number of measurements with a large error. Alternative names for the Gaussian
distribution are the Normal distribution or Bell-shaped distribution.

A Gaussian curve is formally defined as a normalized frequency distribution that is symmetrical
about the line of zero error and in which the frequency and magnitude of quantities are related by
the expression:

where m is the mean value of the data set x and the other quantities are as defined before.

The last equation is particularly useful for analyzing a Gaussian set of measurements and predicting
how many measurements lie within some particular defined range. If the measurement deviations D
are calculated for all measurements such that D = x — m , then the curve of deviation frequency
F(D) plotted against deviation magnitude D is a Gaussian curve known as the error frequency
distribution curve. The mathematical relationship between F(D) and D can then be derived by
modifying the last equation to give:

The shape of a Gaussian curve is strongly influenced by the value of ¢ with the width of the curve
decreasing as ¢ becomes smaller. As a smaller ¢ corresponds with the typical deviations of the
measurements from the mean value becoming smaller, this confirms the earlier observation that the
mean value of a set of measurements gets closer to the true value as ¢ decreases.

If the standard deviation is used as a unit of error, the Gaussian curve can be used to determine the
probability that the deviation in any particular measurement in a Gaussian data set is greater than a

certain value. By substituting the expression for F(D) in equation (5) into the probability equation
(2), the probability that the error lies in a band between error levels D1 and D2 can be expressed as:

Solution of this expression is simplified by the substitution:

Z=D/G e (7)
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The effect of this is to change the error distribution curve into a new Gaussian distribution that has a
standard deviation of one (¢ = 1) and a mean of zero. This new form, shown in figure (4), is known
as a standard Gaussian curve, and the dependent variable is now z instead of D. Equation (6) can
now be re-expressed as:

Unfortunately, neither equation (6) nor (8) can be solved analytically using tables of standard
integrals, and numerical integration provides the only method of solution. However, in practice, the
tedium of numerical integration can be avoided when analyzing data because the standard form of
equation (3.15), and its independence from the particular values of the mean and standard deviation
of the data, means that

standard Gaussian tables that tabulate F(z) for various values of z can be used.

Standard Gaussian tables
A standard Gaussian table, such as that shown in Table 2, tabulates F(z) for various values of z,
where F(z) is given by

Thus, F(z) gives the proportion of data values that are less than or equal to z. This proportion is the
area under the curve of F(z) against z that is to the left of z. Therefore, the expression given in (8)
has to be evaluated as [F(z2) - F(z1)]. Study of Table 1.3 shows that F(z) = 0.5 for z = 0. This
confirms that, as expected, the number of data values < 0 is 50% of the total. This must be so if the
data only has random errors. It will also be observed that Table 1.3, in common with most
published standard Gaussian tables, only gives F(z) for positive values of z. For negative values of
z, we can make use of the following relationship because the frequency distribution curve is
normalized:

FE2)=1-F@) oo, (10)

F(-z) is the area under the curve to the left of (-z), i.e it represents the proportion of data values <-z.

Example (2)
How many measurements in a data set subject to random errors lie outside deviation boundaries of
+c and -6, i.e. how many measurements have a deviation greater than | c | .
Solution
The required number is represented by the sum of the two shaded areas in Figure (4).
This can be expressed mathematically as:
P(E<-corE>+06)=P(E<-06)+P(E>+0)
ForE=-0,z=-1.0 (from equation (5)) .
Using Table 1.3

P(E<-06)=F(-1)=1-F()=1-0.8413 = 0.1587
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Similarly, for E=+ o, z= +1.0, table 1.3 gives :
P(E>+06)=1-P(<+o0)=1-F(1)=1-0.8413 =0.1587

(This last step is valid because the frequency distribution curve is normalized such that the total area
under it is unity.)

Thus
P[E<-6]+P[E>+06]=0.1587+0.1587=0.3174 =32 %

i.e. 32% of the measurements lie outside the +c boundaries, then 68% of the measurements lie
inside.

Table (1.3) Standard Gaussian table

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009

F(2)
00 O0S000 05040 O0S080 OSI20 05160 05199 05239 05279 05319 05359
0.1 05398 05438 05478 05517 05557 05596 05636 05675 05714 05753
02 05793 05832 05871 05910 059548 05987 06026 06064 06103 06141
03 06179 06217 06255 06293 06331 06368 06406 06443 06480 06517
D4 06554 06591 06628 06664 06700 06736 06772 06808 06844 06879
0S5 065915 06950 06985 07019 07054 07088 07123 07157 07190 07224
06 07257 07291 07324 07357 07389 07422 07454 07486 07517 07549
07 07580 07611 07642 07673 07703 07734 07764 07793 07823 0.7852
08 07881 07910 07939 0797 07995 08023 08051 08078 08106 08133
09 08159 08186 08212 08238 038264 08289 08315 08320 08365 08389
08413 08438 08461 08485 08508 08531 08554 08577 08599 08621
08643 08665 08686 08708 08729 08749 08770 08790 08810 0.8830
08849 08869 08888 08%6 08925 08%43 08962 08980 08997 09015
09032 095049 09066 095082 095099 09115 09131 09147 09162 09177
09192 09207 09222 09236 09251 09265 09279 09292 09306 09319
09332 09345 09357 09370 09382 09394 094306 09418 09429 09441
09452 09463 09474 09484 09495 09505 09515 09525 09535 09545
09554 09564 09573 09582 09591 09%99 09608 09616 09625 09633
09641 09648 09656 09664 05671 09678 09686 09693 09699 0.9706
09713 09719 09726 09732 09738 09744 09750 09756 09761 09767
09772 09778 09783 09788 09793 09798 09803 09308 09812 09817
09821 09826 09830 09834 09838 09842 09846 09850 09854 09857
09861 09864 09868 09871 09875 09878 09881 09884 095887 098%
09893 09896 09898 09901 09904 09906 09909 09911 0913 09916
09918 09920 09922 09924 05926 09928 09930 09932 09934 09936
09938 095940 09591 09943 09945 09946 09948 09949 095951 09952
09953 09955 09956 09957 09959 09960 09961 09962 0963 09964
09965 09966 09967 09968 095969 09970 09971 09972 0973 0974
09974 09975 09976 09977 09977 09978 09979 09979 09980 0.9981
09981 09982 09982 09983 09984 09984 09985 09985 095986 09986
09986 09987 09987 09988 095988 09989 09989 09989 09990 0.99%
09990 09991 095991 0991 09992 09992 09992 09992 05993 09993
09993 09993 09994 09994 09994 09994 09994 09995 09995 09995
09995 09995 0995 09996 09996 09996 09996 09996 0.999% 0999
09997 09997 0997 09997 05997 09997 09997 09997 09997 09998
09998 09998 09998 09998 09998 09998 09998 09998 09998 09998
09998 09998 09998 09999 09999 09999 09999 0999 09599 099

PP g5 oun. Su0 Sy qun gu qum, ouh S’ S
-0 ND AL UN~D
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The above analysis shows that, for Gaussian-distributed data values, 68% of the measurements have
deviations that lie within the bounds of +c. Similar analysis shows that boundaries of =2¢ contain
95.4% of data points, and extending the boundaries to £3c encompasses 99.7% of data points. The
probability of any data point lying outside particular deviation boundaries can therefore be
expressed by the following table.
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Deviation boundary % of data points Probability of any particular data

within boundary point being outside boundary
+6 68.0 32.0%
26 95.40 4.60 %
+3 6 99.70 0.30 %

F(E)
ﬁh
|
SRS =
Figure (4) +c boundaries.
Standard error of the mean

The foregoing analysis has examined the way in which measurements with random errors are
distributed about the mean value. However, we have already observed that some error remains
between the mean value of a set of measurements and the true value, i.e. averaging a number of
measurements will only yield the true value if the number of measurements is infinite. If several
subsets are taken from an infinite data population, then, by the central limit theorem, the means of
the subsets will be distributed about the mean of the infinite data set. The error between the mean of
a finite data set and the true measurement value (mean of the infinite data set) is defined as the
standard error of the mean, ,. This is calculated as:

A=0/VN (11)
o tends towards zero as the number of measurements in the data set expands towards infinity. The
measurement value obtained from a set of N measurements, x1, x2, ...... , Xn, can then be expressed
as:

X = Xmean %o

For the data set C of length measurements used earlier, n = 23, 6 = 1.88 and , a = 0.39. The length
can therefore be expressed as 406.5 + 0.4 (68% confidence limit). However, it is more usual to
express measurements with 95% confidence limits ( &= 2 62 boundaries). In this case, 2 6 = 3.76, 2 a
= 0.78 and the length can be expressed as 406.5 £ 0.8 (95% confidence limits).

5. Choosing appropriate instrument

The starting point in choosing the most suitable instrument to use for measurement of a
particular quantity in a manufacturing plant or other system is the specification of the instrument
characteristics required. specially parameters like the desired measurement accuracy.
resolution, sensitivity and dynamic performance. It is also essential to know the environmental
conditions that the instrument will be subjected to, as some conditions will immediately either
eliminate the possibility of using certain types of instrument or else will create a requirement for
expensive protection of the instrument. 1t should also be noted that protection reduces the
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performance of some instruments. especially in terms of their dynamic characteristics (for

example, sheaths protecting thermocouples and resistance thermometers reduce their speed of
response). Provision of this type of information usually requires the expert knowledge of personnel

who are intimately acquainted with the operation of the manufacturing plant or system in question.
Then, a skilled instrument engineer, having knowledge of all the instruments that are available
for measuring the quantity in question, will be able to evaluate the possible list of instruments in
terms of their accuracy, cost and suitability for the environmental conditions and thus choose the

most appropriate instrument. As far as possible, measurement systems and instruments should

be chosen that are as insensitive as possible to the operating environment, although this
requirement is often difficult to meet because of cost and other performance considerations. The

extent to which the measured system will be disturbed during the measuring process is another
important factor in instrument choice. For example, significant pressure loss can be caused to the
measured system in some techniques of flow measurement.

Published literature is of considerable help in the choice of a suitable instrument for a particular
measurement situation. Many books are available that give valuable assistance in the necessary
evaluation by providing lists and data about all the instruments available for measuring a range of
physical quantities.

However, new technigues and instruments are being developed all the time, and therefore a
good instrumentation engineer must keep abreast of the latest developments by reading the

appropriate technical journals reqularly.
The instrument characteristics discussed in the next chapter are the features that form the technical

basis for a comparison between the relative merits of different instruments. Generally, the better
the characteristics, the higher the cost.

However, in comparing the cost and relative suitability of different instruments for a particular
measurement situation, considerations of durability, maintainability and constancy of performance
are also very important because the instrument chosen will often have to be capable of operating for
long periods without performance degradation and a requirement for costly maintenance. In
consequence of this, the initial cost of an instrument often has a low weighting in the evaluation
exercise.

Cost is very strongly correlated with the performance of an instrument, as measured by its static
characteristics. Increasing the accuracy or resolution of an instrument, for example, can only be
done at a penalty of increasing its manufacturing cost. Instrument choice therefore proceeds by
specifying the minimum characteristics required by a measurement situation and then searching
manufacturers’ catalogues to find an instrument whose characteristics match those required. To
select an instrument with characteristics superior to those required would only mean paying more
than necessary for a level of performance greater than that needed.

Combined effect of systematic and random errors

If a measurement is affected by both systematic and random errors that are quantified as £X
(systematic errors) and 2y (random errors), some means of expressing the combined effect of both
types of error is needed. One way of expressing the combined error would be to sum the two
separate components of error, i.e. to say that the total possible error is € = £( X + Y). However, a
more usual course of action is to express the likely maximum error as follows:

It can be shown (ANSI/ASME, 1985) that this is the best expression for the error statistically, since
it takes account of the reasonable assumption that the systematic and random errors are independent
and so are unlikely to both be at their maximum or minimum value at the same time.
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