
1 
 

Lecture 1 
1- C++ Programming Language: 

For the last couple of decades, the C programming language has been widely 

accepted for all applications, and is perhaps the most powerful of structured 

programming languages. Now, C++ has the status of a structured programming 

language with object oriented programming (OOP). 

C++ has become quite popular due to the following reasons: 

1. It supports all features of both structured programming and OOP. 

2. C++ focuses on function and class templates for handling data types. 

2-Getting Ready to Program 

Programs are written to instruct machines to carry out specific tasks or to solve 

specific problems. A step-by-step procedure that accomplishes a desired task is 

called an algorithm. Thus, programming is the activity of communicating algorithms 

to computers. The programming process is analogous, except that machines have no 

tolerance for ambiguity and must have all steps specified in a precise language and 

in tedious detail. 

The Programming Process 

1. Specify the task. 

2. Discover an algorithm for its solution. 

3. Code the algorithm in C++. 

4. Test the code. 

 

 

 

 

 



2 
 

3-A First Program 
First task for anyone learning to program is to print on the screen. Let us begin by 

writing the traditional first C++ program which prints the phrase Hello, world! On 

the screen. The complete program is 

 

#include <iostream> 

#include <conio> 

 main () 

{ 

cout << "Hello World!"; 

getch(); 

} 

Ex/write a program to print the following message on the screen . 

C++ is a programming language 

C++,based on the C programming 

Sol || 

#include <iostream> 

#include <conio> 

 main () 

{ 

cout << " C++ is a programming language\n"; 

cout << " C++ based on the C programming " ; 

getch();} 



3 
 

Ex:-Write program to read two numbers and then calculate the sum of 

square each number and the sum of cubic each number. 

Sol// 

 #include <iostream> 

#include <conio> 

main() 

{ 

int x ,y,z,w; 

cout<<"enter two numbers" <<endl;; 

cin>>x>>y; 

z=x*x+y*y; 

w=x*x*x+y*y*y; 

cout << "z= " << z << endl; 

cout << "w= " << w <<endl; 

getch(); 

} 

Ex :- Write a program to read the number x and then find the value of y 

from the following equation:  

Sol// 

#include <iostream> 

#include <conio> 

main() 

{ 

int x ,y; 

cout<<"enter number" <<endl;; 



4 
 

cin>>x; 

y=3*x*x*x- 8*x*x-7*x+8; 

cout << "y= " << y << endl; 

getch(); 

} 

4- Control flow introduction 

When a program is run, the CPU begins execution at the top of main(), executes 

some number of statements, and then terminates at the end of main(). The sequence 

of statements that the CPU executes is called the program’s path. Most of the 

programs you have seen so far have been straight-line programs. Straight-line 

programs have sequential flow — that is, they take the same path (execute the same 

statements) every time they are run (even if the user input changes). 

However, often this is not what we desire. For example, if we ask the user to make 

a selection, and the user enters an invalid choice, ideally we’d like to ask the user to 

make another choice. This is not possible in a straight-line program. Fortunately, 

C++ provides control flow statements (also called flow control statements), which 

allow the programmer to change the CPU’s path through the program. There are 

quite a few different types of control flow statements, so we will cover them briefly 

here, and then in more detail throughout the rest of the section 

5-Conditional branches 

A conditional branch is a statement that causes the program to change the path 

of execution based on the value of an expression.  

If statements 

The most basic kind of conditional branch in C++ is the if statement. An if statement 

takes the form: 

if (expression) 



5 
 

statement 

or 

if (expression) 

statement 

else 

statement2 

Here is a simple program that uses an if statement to check then number is smallest 

or largest then 10 number: 

#include <iostream> 

#include <conio> 

 main () 

{ 

cout << "Enter a number: "; 

int nX; 

cin >> nX; 

if (nX > 10) 

cout << nX << "is greater than 10" << endl; 

else 

cout << nX << "is not greater than 10" << endl; 

getch(); 

} 

Nested if 

It is also possible to nest if statements within other if statements: 

Here is a simple program to input the grade of the student then check it and 

output the result. 

Grade Result 

G<50 Failed 



6 
 

G<60 Acceptance 

G<70 median 

G<80 good 

G<90 Very good 

G<=100 Excellent 

The switch Statement 

The switch statement is a multiway conditional statement generalizing the if-else 

statement. The general form of the switch statement is given by switch 

(expression) 

{ 

case constant1: 

group of statements 1; 

break; 

case constant2: 

group of statements 2; 

break; 

. 

. 

. 

default: 

default group of statements 

} 

 

Loops 

A loop causes the program to repeatedly execute a series of statements until a given 

condition is false. 



7 
 

for loop 

Its main function is to repeat statement while condition remains true, like the while 

loop. But in addition, the for loop provides specific locations to contain an 

initialization statement and an increase statement. So this loop is specially designed 

to perform a repetitive action with a counter which is initialized and increased on 

each iteration. 

Its format is: 

for (initialization; condition; increase) statement 

Here is an example of print numbers between 1 to 10 using a for loop 

#include <iostream> 

#include <conio> 

 main () 

{ 

for (int i = 1; i <= 10; i++) 

cout<<i<<"," ; 

getch(); 

} 

Ex:- Write C++ program to print the following: 

#include <iostream> 

#include <conio> 

void main( ) 

{ 

int x; 
 



8 
 

for ( x = 1; x < 7; ++ x ) 

cout << x <<"\t" << 11 - x << endl; 

getch(); 

} 

 

The while Statement 

The general form of a while statement is 

while (condition) 

statement 

First, condition is evaluated. If it is true, statement is executed, and control passes 

back to the beginning of the while loop. The result: The body of the while loop, 

namely, statement, is executed repeatedly until condition is false. At that point, 

control passes to the next statement. In this way, statement can be executed zero or 

more times. 

Ex2:- Write C++ program to find the cub of a number, while it is positive: 

 

#include<iostream> 

#include<conio> 

void main( ) 

{ 

int num, cubenum; 

cout << "Enter positive number \n"; 

cin >> num; 

while ( num > 0 ) 

{ 

cubenum = num * num * num; 



9 
 

cout << "cube number is :" << cubenum << endl; 

cin >> num; 

getch(); 

} 

} 

 


