Lect. No. 7 Cardiovascular Physiology

Prof. Dr. Nader Abo-Tubikh

Mazaya University College Department of Medical Lab Technology

The Cardiovascular System

- A closed system of the heart and blood vessels
 - The heart **pumps** blood
 - Blood vessels allow blood to circulate to all parts of the body
- The general functions of the cardiovascular system are:
 - **1. Deliver oxygen and nutrients.**
 - 2. Remove carbon dioxide and other waste products.

Functions of the Cardiovascular System

1. Bring Materials to Cells

- Move **oxygen** from the lungs to all body cells.
 - Move **nutrients** and water from the gastrointestinal system to all body cells.
 - Move **stored nutrients** from liver and adipose tissue to all cells.
 - Carries immune cells, antibodies, and clotting proteins to wherever they are needed.

2. Remove Waste Materials

- Move **metabolic wastes** from all body cells to kidney for excretion
- Move **heat** from cells to skin for dissipation
- Move **carbon dioxide** from body cells to lungs for elimination
- Move particular toxic substances from some cells to liver for processing

The Heart

Location

- Thorax between the lungs
- Pointed apex directed toward left hip
- About the **size** of your fist

Coverings

- Pericardium a double serous membra
 - Visceral pericardium Next to heart
 - Parietal pericardium Outside layer

Pericardium

Serous fluid fills the space between the layers of pericardium

Layers

- Epicardium (Outside layer)
 - This layer is the **parietal pericardium**
 - Connective tissue layer
- Myocardium (Middle layer)
 - Mostly cardiac muscle
- Endocardium (Inner layer)
 - Endothelium

The Heart: Chambers

- Right and left side act as **separate** pumps
- Four chambers
 - Atria
 - Receiving chambers
 - Right atrium
 - Left atrium
 - Ventricles
 - Discharging chambers
 - Right ventricle
 - Left ventricle

The Heart Valves

- Allow blood to flow in only one direction Function is to prevent backflow
- Four valves
 - Atrioventricular valves –
 between atria and ventricles
 - Bicuspid valve (left)
 - Tricuspid valve (right)
 - Semilunar valves between ventricle and artery
 - Pulmonary semilunar valve
 - Aortic semilunar valve
- Valves open as blood is pumped through
- Held in place by chordae tendineae ("heart strings")
- Close to prevent backflow

Operation of Heart Valves

Operation of the semilunar valves

and intraventricular pressure falls, blood leaflets of semilunar

Semilunar valve closed

AV valves closed

The Heart: Associated Great Vessels

- 1. Aorta leaves left ventricle
- 2. Pulmonary arteries leave right ventricle
- 3. Vena cava enters right atrium
- 4. Pulmonary veins (four) enter left atrium
- Blood in the heart chambers does not nourish the myocardium
- Coronary Circulation
- The heart has its own nourishing circulatory system
 - 1. Coronary arteries
 - 2. Cardiac veins
 - Blood empties into the right atrium via the coronary sinus

<u>SYSTEMIC AND PULMONARY</u> <u>CIRCULATION</u>

- LEFT SIDE IS A PUMP TO THE SYSTEMIC CIRCULATION.
- RIGHT SIDE IS A PUMP TO THE PULMONARY CIRCULATION.

Flow

- Flow (Q) is the volume flow rate of blood, and is expressed as volume per time (e.g., ml/min).
- Note that in terms of the tissues, flow is the most important physical parameter, as it is dictates the delivery of materials such as oxygen and glucose.
- Physics of Circulation: Ohm's Law
- (Q = $\Delta P/R$) or (ΔP = Q * R) or (R = $\Delta P/Q$)
- In these equations, ΔP indicates the change in pressure on two ends of a vessel , and not the pressure within the vessel itself.
- Note that Ohm's law indicates that flow through a vessel will be INVERSELY proportional to its resistance (R).

The Heart: Conduction System

Intrinsic conduction system (nodal system)

Heart muscle cells contract, without nerve impulses, in a regular, continuous way

Special tissue sets the pacemakers

- 1. Sinoatrial node (SA) Pacemaker
- 2. Atrioventricular node (AV)
- 3. Atrioventricular bundle
- 4. Bundle branches
- 5. Purkinje fibers

Characteristics of Pacemaker Cells

- Smaller than contractile cells
- Don't contain many myofibrils
- No organized sarcomere structure
- do not contribute to the contractile force of the heart

The Heart's Cardiac Cycle

- **Cardiac cycle** is the sequence of events as blood enters the atria, leaves the ventricles and then starts over.
- Synchronizing this is the Intrinsic Electrical Conduction System.
- Influencing the rate is done by the sympathetic and parasympathetic divisions of the ANS.
- Atria contract simultaneously Atria relax, then ventricles contract.
- **Cardiac cycle events** of one complete heart beat:
- 1. Mid-to-late diastole blood flows into ventricles
- 2. Ventricular systole blood pressure builds before ventricle contracts, pushing out blood
- 3. Early diastole atria finish re-filling, ventricular pressure is low

Cardiac Cycle Coordinating the activity

- The electrical system gives rise to electrical changes (depolarization/repolarization) that is transmitted through isotonic body fluids and is recordable
 - The ECG (Electrocardiograph)
 - A recording of electrical activity
 - Can be mapped to the cardiac cycle