Z - Transform

The z-transform is a useful tool in the analysis of discrete-time signals and systems and is the discrete-time counterpart of the Laplace transform for continuous-time signals and systems. The z-transform may be used to solve constant coefficient difference equations, evaluate the response of a linear time-invariant system to a given input, and design linear filters.

The z-transform of a causal sequence x(n), designated by X(z) or Z(x(n)), is defined as

$$\mathbf{X}(\mathbf{z}) = \mathbf{Z} \{\mathbf{x}(\mathbf{n})\} = \sum_{\mathbf{n} = -\infty}^{\infty} \mathbf{x}(\mathbf{n})\mathbf{z}^{-\mathbf{n}}$$

where z is the complex variable. Here, the summation taken from n = 0 to $n = \infty$ is according to the fact that for most situations, the digital signal x(n) is the causal sequence, that is, x(n) = 0 for n < 0.

Thus, the definition above is referred to as a one-sided z-transform or a unilateral transform.

Z-Transform of some time sequences1) Right Side Sequences

Example: find the Z_transform for the given sequence

$$x(n) = (1, 2, 2, 1)$$

$$\uparrow$$
 $X(z) = Z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(n)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-1} + x(2)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(z)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-1} + x(2)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$
 $x(z) = z \{x(z)\} = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)z^{-1} + x(2)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$

2) Left side Sequences

Example: find the Z_transform for the given sequence

$$x(n) = (1, 1, 2, 2)$$
 \uparrow
 $X(z) = Z \{x(n)\} = \sum_{n=-3}^{\infty} x(n)z^{-n} = x(-3)z^3 + x(-2)z^2 + x(-1)z^1 + x(0)z^0$
 $x(z) = Z \{x(z)\} = \sum_{n=-3}^{\infty} x(n)z^{-n} = x(-3)z^3 + z^2 + 2z + 2$

3) Double sided sequences:

Example: find the Z_transform for the given sequence x(n)=[2 1 1 2]

$$X(z) = Z \{x(n)\} = \sum_{n=-2}^{\infty} x(n)z^{-n} = x(-2)z^{2} + x(-1)z^{1} + x(0)z^{0} + x(1)z^{-1}$$

$$= 2z^{2} + 1z^{1} + 1z^{0} + 2z^{-1}$$

Example

Given the sequence

$$x(n)=u(n),$$

Find the z-transform of x(n).

Solution:

From the definition, the z-transform is given by

$$X(z) = \sum_{n=0}^{\infty} u(n)z^{-n} = \sum_{n=0}^{\infty} (z^{-1})^n = 1 + (z^{-1}) + (z^{-1})^2 + \dots$$

This is an infinite geometric series that converges to

$$X(z) = \frac{1}{1 - Z^{-1}}$$

$$X(z) = \frac{z}{z-1}$$

The region of convergence for all values of z is given as

|z| > 1

Example

Considering the exponential sequence

$$x(n)=a^nu(n),$$

Find the z-transform of the sequence x(n).

Solution:

$$X(z) = \sum_{n=0}^{\infty} a^n u(n) z^{-n} = \sum_{n=0}^{\infty} \left(a z^{-1} \right)^n = 1 + \left(a z^{-1} \right) + \left(a z^{-1} \right)^2 + \dots$$

Since this is a geometric series which will converge for $|az^{-1}| < 1$ is further expressed as

$$X(z) = \frac{1}{1 - az^{-1}}$$

$$X(z) = \frac{z}{z-a}$$
, for $|z| > |a|$.

TABLE 5.1 Table of z-transform pairs.

Line No. $x(n)$, $n \ge 0$		z-Transform X(z)	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n)z^{-n}$	
2	$\delta(n)$	1	z > 0
3	au(n)	$\frac{az}{z-1}$	z > 1
4	nu(n)	$\frac{z}{(z-1)^2}$	z > 1
5	$n^2u(n)$	$\frac{z(z+1)}{(z-1)^3}$ $\frac{z}{z-a}$	z > 1
6	$a^n u(n)$	$\frac{z}{z-a}$	z > a
7	$e^{-na}u(n)$	$\frac{z}{(z-e^{-a})}$	$ z > e^{-a}$
8	$na^nu(n)$	$\frac{az}{(z-a)^2}$	z > a
9	$\sin(an)u(n)$	$\frac{z\sin(a)}{z^2-2z\cos(a)+1}$	z > 1
10	$\cos(an)u(n)$	$\frac{z[z-\cos(a)]}{z^2-2z\cos(a)+1}$	z > 1
11	$a^n \sin(bn)u(n)$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$a^n \cos(bn)u(n)$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-an}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$
14	$e^{-an}\cos(bn)u(n)$	$\frac{z[z-e^{-a}\cos(b)]}{z^2-[2e^{-a}\cos(b)]z+e^{-2a}}$	$ z > e^{-a}$
15	$2 A P ^n \cos(n\theta + \phi)u(n)$ where P and A are complex constants defined by $P = P /\ell\theta$, $A = A $	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	

Example

Find the z-transform for each of the following sequences:

a.
$$x(n) = 10u(n)$$

b.
$$x(n) = 10 \sin(0.25\pi n)u(n)$$

c.
$$x(n) = (0.5)^n u(n)$$

$$d. x(n) = (0.5)^n \sin(0.25\pi n)u(n)$$

Solution:

a. From Line 3 in Table 5.1, we get

$$X(z) = Z(10u(n)) = \frac{10z}{z-1}.$$

b. Line 9 in Table 5.1 leads to

$$X(z) = 10Z(\sin(0.2\pi n)u(n))$$

$$= \frac{10\sin(0.25\pi)z}{z^2 - 2z\cos(0.25\pi) + 1} = \frac{7.07z}{z^2 - 1.414z + 1}.$$

c. From Line 6 in Table 5.1, we yield

$$X(z) = Z((0.5)^n u(n)) = \frac{z}{z - 0.5}.$$

d. From Line 11 in Table 5.1, it follows that

$$X(z) = Z((0.5)^n \sin(0.25\pi n)u(n)) = \frac{0.5 \times \sin(0.25\pi)z}{z^2 - 2 \times 0.5\cos(0.25\pi)z + 0.5^2}$$
$$= \frac{0.3536z}{z^2 - 1.4142z + 0.25}.$$

Properties of the z-Transform

Linearity:

The z-transform is a linear transformation, which implies

$$Z(ax_1(n) + bx_2(n)) = aZ(x_1(n)) + bZ(x_2(n)),$$

where $x_1(n)$ and $x_2(n)$ denote the sampled sequences, while a and b are the arbitrary constants.

Example

Find the z-transform of the sequence defined by

$$x(n) = u(n) - (0.5)^n u(n).$$

Solution:

Applying the linearity of the z-transform previously discussed, we have

$$x(n) = u(n) - (0.5)^n u(n).$$

Using Table 5.1 yields

$$Z(u(n)) = \frac{z}{z-1}$$

and $Z(0.5^n u(n)) = \frac{z}{z-0.5}$.

Substituting these results into X(z) leads to the final solution,

$$X(z) = \frac{z}{z-1} - \frac{z}{z-0.5}$$

Shift theorem:

Given X(z), the z-transform of a sequence x(n), the z-transform of x(n - m), the time-shifted sequence, is given by

$$Z(x(n-m))=z^{-m}X(z).$$

Example

Determine the z-transform of the following sequence:

$$y(n) = (0.5)^{(n-5)} \cdot u(n-5),$$

Using Table 5.1 leads to

$$Y(z) = z^{-5} \cdot \frac{z}{z - 0.5} = \frac{z^{-4}}{z - 0.5}$$

Convolution:

Given two sequences $x_1(n)$ and $x_2(n)$, their convolution can be determined as follows:

$$x(n) = x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(n-k)x_2(k),$$

In z-transform domain, we have

$$X(z) = X_1(z)X_2(z).$$

Here, X(z) = Z(x(n)), $X_1(z) = Z(x_1(n))$, and $X_2(z) = Z(x_2(n))$.

Example

Given two sequences,

$$x_1(n) = 3\delta(n) + 2\delta(n-1)$$

$$x_2(n) = 2\delta(n) - \delta(n-1),$$

a) Find the z-transform of their convolution:

$$X(z) = Z(x_1(n)*x_2(n)).$$

b) Determine the convolution sum using the z-transform:

$$x(n) = x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(k) x_2(n-k).$$

Solution:

a) Applying z-transform to $x_1(n)$ and $x_2(n)$, respectively, it follows that

$$X_1(z) = 3 + 2z^{-1}$$

 $X_2(z) = 2 - z^{-1}$.

$$X_2(z) = 2 - z^{-1}.$$

Using the convolution property, we have

$$X(z) = X_1(z)X_2(z) = (3 + 2z^{-1})(2 - z^{-1})$$
$$= 6 + z^{-1} - 2z^{-2}.$$

b) Applying the inverse z-transform and using the shift theorem and line 1 of Table 5.1 leads to

$$x(n) = Z^{-1} \left(6 + z^{-1} - 2z^{-2} \right) = 6\delta(n) + \delta(n-1) - 2\delta(n-2).$$

Inverse z-Transform

The z-transform of the sequence x(n) and the inverse z-transform of the function X(z) are defined as, respectively,

$$X(z) = Z(x(n))$$
and $x(n) = Z^{-1}(X(z))$,

Where Z() is the z-transform operator, while $Z^{-1}()$ is the inverse z-transform operator.

The inverse z-transform may be obtained by at least three methods:

- •Partial fraction expansion and look-up table.
- •Power series expansion.
- •Residue method.

Example1

Find the inverse z-transform for each of the following functions:

a.
$$X(z) = 2 + \frac{4z}{z-1} - \frac{z}{z-0.5}$$

b.
$$X(z) = \frac{5z}{(z-1)^2} - \frac{2z}{(z-0.5)^2}$$

c.
$$X(z) = \frac{10z}{z^2 - z + 1}$$

c.
$$X(z) = \frac{10z}{z^2 - z + 1}$$

d. $X(z) = \frac{z^{-4}}{z - 1} + z^{-6} + \frac{z^{-3}}{z + 0.5}$

Solution:

a.
$$x(n) = 2Z^{-1}(1) + 4Z^{-1}\left(\frac{z}{z-1}\right) - Z^{-1}\left(\frac{z}{z-0.5}\right)$$
.
From Table 5.1, we have

$$x(n) = 2\delta(n) + 4u(n) - (0.5)^{n}u(n).$$

b.
$$x(n) = Z^{-1} \left(\frac{5z}{(z-1)^2} \right) - Z^{-1} \left(\frac{2z}{(z-0.5)^2} \right) = 5Z^{-1} \left(\frac{z}{(z-1)^2} \right) - \frac{2}{0.5} Z^{-1} \left(\frac{0.5z}{(z-0.5)^2} \right).$$

Then
$$x(n) = 5nu(n) - 4n(0.5)^n u(n)$$
.

c. Since
$$X(z) = \frac{10z}{z^2 - z + 1} = \left(\frac{10}{\sin(a)}\right) \frac{\sin(a)z}{z^2 - 2z\cos(a) + 1}$$
,

by coefficient matching, we have

$$-2\cos(a)=-1.$$

Hence, $\cos(a) = 0.5$, and $a = 60^{\circ}$. Substituting $a = 60^{\circ}$ into the sine function leads to

$$\sin{(a)} = \sin{(60^\circ)} = 0.866.$$

Finally, we have

$$x(n) = \frac{10}{\sin(a)} Z^{-1} \left(\frac{\sin(a)z}{z^2 - 2z\cos(a) + 1} \right) = \frac{10}{0.866} \sin(n \cdot 60^0)$$
$$= 11.547 \sin(n \cdot 60^0).$$

d. Since

$$x(n) = Z^{-1}\left(z^{-5}\frac{z}{z-1}\right) + Z^{-1}\left(z^{-6}\cdot 1\right) + Z^{-1}\left(z^{-4}\frac{z}{z+0.5}\right),$$

using Table 5.1 and the shift property, we get

$$x(n) = u(n-5) + \delta(n-6) + (-0.5)^{n-4}u(n-4).$$